MS&E 321

Stochastic Systems


| General Info | Announcements | Course Topics | Handouts | Assignments | References | Links |



General Information

Course Description 

This course addresses fundamental topics in the modern theory of stochastic processes, with emphasis on a broad spectrum of applications in engineering, economics, finance, and the sciences. The course carefully treats Markov chains in discrete and continuous time, Perron-Frobenius theory, Markov processes in general state space (including Harris chains), Lyapunov functions and supermartingale arguments for establishing stability, theory of regenerative processes and related coupling ideas, rare event analysis via large deviations, renewal theory, martingales, Brownian motion, and associated diffusion approximations. At the conclusion of this course, students will have a working knowledge of the mathematical tools and models that represent the cutting edge in the theory and application of stochastic processes to complex systems. The ideas will be illustrated by appealing to examples chosen from queueing theory, inventory theory, and finance.

Contact Information

Instructor:

Professor Peter Glynn
Office:
Huang Engineering Center, Room 326
Email:
[email protected]

Course Assistant:

Jing Ma
Office:
Huang Engineering Center, Room 314S
Email:
[email protected]

Lectures

Time :  M/W/F 11:00 AM - 12:15 PM (Note: Not all class periods will be used.)

Location :
380-381T


Office Hours

Professor Glynn : 2 PM to 3 PM Thursdays at Huang 326

Jing Ma : 10:00 AM to 11:00 AM Thursdays and 1:30 PM to 2:30 PM Fridays at Huang B007

Prerequisites

Students taking this course are expected to have taken a basic course on stochastic processes at the level of MS&E 221 or STAT 217, and should have a familiarity with basic linear algebra. Ideally, students should also have an understanding of basic real variables (i.e. rigorous understanding of limits, convergence, etc.).

Textbook

Adventures in Stochastic Processes, by S.I. Resnick. Birkhauser, Boston (1992). (Note this is available as a Kindle reader, as well as in hard copy form; see Amazon)

Homework

There will be assignments due roughly every two weeks. Collaboration among students is encouraged. You should feel free to discuss problems with your fellow students (please document on each assignment with whom you worked). However, you must write your own solutions, and copying homework from another student (past or present) is forbidden. The Stanford Honor Code will apply to all assignments, both in and out of class.

Exams

There will be no midterm.  The final will be a 48 hours take-home.

Presentation:

To encourage you to think about how the course concepts apply to problems of direct interest to you, you are asked to select one or two papers from the current literature that build upon the tools discussed in this course. You will be asked to make a short presentation to the class at the end of the quarter, to provide your slides, and to generate a short written report on your selected topic. (A couple of pages would be fine. Please discuss (at a high level) the main results, and possible further research directions.) Please send your thoughts regarding potential papers to Professor Glynn and Jing Ma by February 6th.

Grading

The course grade will be based on assignments (40%), presentation/write-up (20%) and the final exam (40%).




| Management Science & Engineering Dept | Stanford University |